Spin liquid state in an organic Mott insulator with a triangular lattice

Phys Rev Lett. 2003 Sep 5;91(10):107001. doi: 10.1103/PhysRevLett.91.107001. Epub 2003 Sep 4.

Abstract

1H NMR and static susceptibility measurements have been performed in an organic Mott insulator with a nearly isotropic triangular lattice, kappa-(BEDT-TTF)2Cu2(CN)(3), which is a model system of frustrated quantum spins. The static susceptibility is described by the spin S=1/2 antiferromagnetic triangular-lattice Heisenberg model with the exchange constant J approximately 250 K. Regardless of the large magnetic interactions, the 1H NMR spectra show no indication of long-range magnetic ordering down to 32 mK, which is 4 orders of magnitude smaller than J. These results suggest that a quantum spin liquid state is realized in the close proximity of the superconducting state appearing under pressure.