Disparate regulation of insulin-like growth factor-binding proteins in a primitive, ictalurid, teleost (Ictalurus punctatus)

Gen Comp Endocrinol. 2003 Nov;134(2):122-30. doi: 10.1016/s0016-6480(03)00244-2.

Abstract

Vertebrate growth is principally controlled by growth hormone (GH) and, its intermediary, insulin-like growth factor-I (IGF-I). The actions of IGF-I are modulated by high-affinity binding proteins called insulin-like growth factor binding-proteins (IGFBPs). Channel catfish exhibit atypical responses (increased percentage body fat and reduced percentage protein) to GH treatment, despite GH-dependent IGF-I production. Among possible explanations for this atypical response to GH treatment is an unusual regulation of blood IGFBPs. In this species, there has been one report of a single 33-kDa plasma binding protein. To examine the occurrence and regulation of plasma IGFBPs in this species, two strains of channel catfish (Norris and USDA-103) were treated with weekly injections of recombinant bovine GH at different temperatures (21 degrees C versus 26 degrees C). In a separate experiment involving catfish of a different strain, endogenous GH levels were altered via injection of the GH secretagogue, bGHRH(1-29)-amide, and held in fresh water or transferred to brackish water (12 ppt). Following these treatments, the type and regulation of plasma IGFBPs in these catfish strains were examined by Western ligand blotting. We have identified five IGFBPs (19, 35, 44, 47, and >80 kDa) in catfish plasma that are differentially altered by experimental treatment and genetic lineage. Levels of the 19-kDa IGFBP were elevated in catfish of Norris and USDA-103 strains that were exposed to a higher environmental temperature (26 degrees C versus 21 degrees C), but was not seen in those animals used for the GH secretagogue/salinity study. In most vertebrates, treatment with GH increases levels of plasma IGFBP-3 (approximately 40-50 kDa). In the USDA-103 and Norris catfish strains, bGH injection reduced plasma levels of the 44- and 47-kDa IGFBPs. Similarly, elevations in plasma GH levels in GH secretagogue-treated and brackish water-adapted catfish resulted in reductions of the 44- and 47-kDa IGFBPs as well as a reduction in presence of a 35-kDa IGFBP that was not detected in the Norris or USDA-103 strains. Reduced levels of the 35, 44, and 47 kDa IGFBPs, seen in the plasma of the GH secretagogue-treated and brackish water-adapted animals, suggests that the atypical response of channel catfish to GH treatment is not attributed to the use of heterologous (bovine) GH. This negative response of the 35-47 kDa IGFBPs to GH has not been reported in any teleost or vertebrate (healthy) and may be partly responsible for the atypical physiological responses of channel catfish to GH treatment.

Publication types

  • Comparative Study
  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, Non-P.H.S.

MeSH terms

  • Animals
  • Cattle
  • Down-Regulation
  • Growth Hormone / pharmacology
  • Growth Hormone / physiology*
  • Ictaluridae / blood*
  • Ictaluridae / growth & development
  • Insulin-Like Growth Factor Binding Proteins / blood*
  • Insulin-Like Growth Factor Binding Proteins / classification
  • Insulin-Like Growth Factor Binding Proteins / drug effects
  • Seawater
  • Sermorelin / metabolism*
  • Sermorelin / pharmacology
  • Species Specificity
  • Temperature

Substances

  • Insulin-Like Growth Factor Binding Proteins
  • Sermorelin
  • Growth Hormone