The three-dimensional flow field generated by a feeding calanoid copepod measured using digital holography

J Exp Biol. 2003 Oct;206(Pt 20):3657-66. doi: 10.1242/jeb.00586.

Abstract

Digital in-line holography is used for measuring the three-dimensional (3-D) trajectory of a free-swimming freshwater copepod Diaptomus minutus, and simultaneously the instantaneous 3-D velocity field around this copepod. The optical setup consists of a collimated He-Ne laser illuminating a sample volume seeded with particles and containing several feeding copepods. A time series of holograms is recorded at 15 Hz using a lensless 2Kx2K digital camera. Inclined mirrors on the walls of the sample volume enable simultaneous recording of two perpendicular views on the same frame. Numerical reconstruction and matching of views determine the 3-D trajectories of a copepod and the tracer particles to within pixel accuracy (7.4 microm). The velocity field and trajectories of particles entrained by the copepod have a recirculating pattern in the copepod's frame of reference. This pattern is caused by the copepod sinking at a rate that is lower than its terminal sinking speed, due to the propulsive force generated by its feeding current. Consequently, the copepod sees the same fluid, requiring it to hop periodically to scan different fluid for food. Using Stokeslets to model the velocity field induced by a point force, the measured velocity distributions enable us to estimate the excess weight of the copepod (7.2x10(-9) N), its excess density (6.7 kg m(-3)) and the propulsive force generated by its feeding appendages (1.8x10(-8) N).

Publication types

  • Comparative Study
  • Research Support, U.S. Gov't, Non-P.H.S.

MeSH terms

  • Animals
  • Biomechanical Phenomena
  • Copepoda / physiology*
  • Feeding Behavior / physiology*
  • Holography
  • Lasers
  • Models, Biological*
  • Swimming / physiology*
  • Time Factors
  • Water Movements*