Influenza virus induction of apoptosis by intrinsic and extrinsic mechanisms

Int Rev Immunol. 2003 Sep-Dec;22(5-6):425-49. doi: 10.1080/08830180305216.

Abstract

It is now firmly established that apoptosis is an important mechanism of influenza virus-induced cell death both in vivo and in vitro. Data are predominantly from experiments with influenza A virus and in vitro experimental systems. Multiple influenza virus factors have been identified that can activate intrinsic or extrinsic apoptotic induction pathways. Currently there is no evidence for influenza virus directly accessing the apoptosis execution factors. The best-studied influenza virus inducers of apoptosis are dsRNA, NS1, NA, and a newly described gene product PB1-F2. PB1-F2 is the only influenza virus factor to date identified to act intrinsically by localization and interaction with the mitochondrial-dependent apoptotic pathway. Both dsRNA and NA have been shown to act via an extrinsic mechanism involving proapoptotic host-defense molecules: PKR by induction of Fas-Fas ligand and NA by activation of TGF-beta. PKR is capable of controlling several important cell-signaling pathways and therefore may have multiple effects; a predominant one is increased interferon (IFN) production and activity. NS1 has been shown to be both proapoptotic and antiapoptotic. Use of influenza virus NS1 deletion mutants has provided evidence for NS1 interference with apoptosis, IFN induction, and related cell-signaling pathways. Influenza virus also has important exocrine paracrine effects, which are likely mediated via TNF family ligands and oxygen, free radicals capable of inducing apoptosis. Little is known about activation of inhibitors of apoptosis such as inhibitory apoptotic proteins. Whether all these factors always have a role in influenza virus-induced apoptosis is unknown. The kinetics of synthesis of influenza virus factors affecting apoptosis during the replication cycle may be an important aspect of apoptosis induction.

Publication types

  • Research Support, U.S. Gov't, Non-P.H.S.
  • Review

MeSH terms

  • Apoptosis*
  • Caspases / metabolism
  • Influenza A virus / metabolism
  • Influenza A virus / pathogenicity*
  • Oxidative Stress
  • Signal Transduction / physiology*

Substances

  • Caspases