Isochores and tissue-specificity

Nucleic Acids Res. 2003 Sep 1;31(17):5212-20. doi: 10.1093/nar/gkg699.

Abstract

The housekeeping (ubiquitously expressed) genes in the mammal genome were shown here to be on average slightly GC-richer than tissue-specific genes. Both housekeeping and tissue-specific genes occupy similar ranges of GC content, but the former tend to concentrate in the upper part of the range. In the human genome, tissue-specific genes show two maxima, GC-poor and GC-rich. The strictly tissue-specific human genes tend to concentrate in the GC-poor region; their distribution is left-skewed and thus reciprocal to the distribution of housekeeping genes. The intermediately tissue-specific genes show an intermediate GC content and the right-skewed distribution. Both in the human and mouse, genes specific for some tissues (e.g., parts of the central nervous system) have a higher average GC content than housekeeping genes. Since they are not transcribed in the germ line (in contrast to housekeeping genes), and therefore have a lower probability of inheritable gene conversion, this finding contradicts the biased gene conversion (BGC) explanation for elevated GC content in the heavy isochores of mammal genome. Genes specific for germ-line tissues (ovary, testes) show a low average GC content, which is also in contradiction to the BGC explanation. Both for the total data set and for the most part of tissues taken separately, a weak positive correlation was found between gene GC content and expression level. The fraction of ubiquitously expressed genes is nearly 1.5-fold higher in the mouse than in the human. This suggests that mouse tissues are comparatively less differentiated (on the molecular level), which can be related to a less pronounced isochoric structure of the mouse genome. In each separate tissue (in both species), tissue-specific genes do not form a clear-cut frequency peak (in contrast to housekeeping genes), but constitute a continuum with a gradually increasing degree of tissue-specificity, which probably reflects the path of cell differentiation and/or an independent use of the same protein in several unrelated tissues.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Base Composition / genetics
  • Codon / genetics
  • Databases, Nucleic Acid
  • Female
  • GC Rich Sequence / genetics
  • Gene Expression Profiling*
  • Genome
  • Humans
  • Isochores / genetics*
  • Male
  • Mice

Substances

  • Codon
  • Isochores