Microarray analysis uncovers retinoid targets in human bronchial epithelial cells

Oncogene. 2003 Jul 31;22(31):4924-32. doi: 10.1038/sj.onc.1206728.

Abstract

Retinoids, the natural and synthetic derivatives of vitamin A, have a role in cancer treatment and prevention. There is a need to reveal mechanisms that account for retinoid response or resistance. This study identified candidate all-trans-retinoic acid (RA) target genes linked to growth suppression in BEAS-2B human bronchial epithelial cells. Microarray analyses were performed using Affymetrix arrays. A total of 11 RA-induced species were validated by reverse transcription polymerase chain reaction (RT-PCR), Western or Northern analyses. Three of these species were novel candidate RA-target genes in human bronchial epithelial cells. These included: placental bone morphogenetic protein (PLAB), polyamine oxidase isoform 1 (PAOh1) and E74-like factor 3 (ELF3). Expression patterns were studied in RA-resistant BEAS-2B-R1 cells. In BEAS-2B-R1 cells, RA dysregulated the expression of the putative lymphocyte G0/G1 switch gene (G0S2), heme oxygenase 1 (HMOX1), tumor necrosis factor-alpha-induced protein 2 (TNFAIP2), inhibitor of DNA binding 1(Id1), fos-like antigen 1 (FOSL1), transglutaminase 2 (TGM2), asparagine synthetase (ASNS), PLAB, PAOh1 and ELF3, while prominent induction of insulin-like growth-factor-binding protein 6 (IGFBP6) still occurred. In summary, this study identified 11 candidate RA-target genes in human bronchial epithelial cells including three novel species. Expression studies in BEAS-2B-R1 cells indicated that several were directly implicated in RA signaling, since their aberrant expression was linked to RA resistance of human bronchial epithelial cells.

Publication types

  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, P.H.S.

MeSH terms

  • Blotting, Northern
  • Blotting, Western
  • Bronchi / cytology*
  • Cell Line, Transformed / drug effects
  • Cell Line, Transformed / metabolism
  • Culture Media, Serum-Free / pharmacology
  • Drug Resistance
  • Epithelial Cells / drug effects
  • Epithelial Cells / metabolism
  • Gene Expression Profiling*
  • Gene Expression Regulation / drug effects*
  • Humans
  • Oligonucleotide Array Sequence Analysis
  • RNA, Messenger / biosynthesis
  • RNA, Messenger / genetics
  • RNA, Neoplasm / biosynthesis
  • RNA, Neoplasm / genetics
  • Reverse Transcriptase Polymerase Chain Reaction
  • Tretinoin / pharmacology*

Substances

  • Culture Media, Serum-Free
  • RNA, Messenger
  • RNA, Neoplasm
  • Tretinoin