Multiple headspace solid-phase microextraction for the quantitative determination of volatile organic compounds in multilayer packagings

J Chromatogr A. 2003 May 30;999(1-2):155-64. doi: 10.1016/s0021-9673(02)01524-8.

Abstract

The theory of multiple headspace solid-phase microextraction (HS-SPME) and a method based on multiple HS-SPME for the quantitative determination of volatile organic compounds (VOCs) in packaging materials is presented. The method allows the direct analysis of solid samples without using organic solvents to extract analytes. Multiple headspace solid-phase microextraction is a stepwise method proposed to eliminate the influence of the sample matrix on the quantitative analysis of solid samples by HS-SPME. Different amounts of packaging and different volumes of standard solution were studied in order to remove a substantial quantity of analytes from the headspace at each extraction and obtain the theoretical exponential decay of the peak area of the four successive extractions and, thus, the total area was calculated from these four extractions. In addition, two fibres were compared: carboxen-polydimethylsiloxane (CAR-PDMS) and divinylbenzene-carboxen-polydimethylsiloxane (DVB-CAR-PDMS), as they showed differences in the linearity of the exponential decay with the number of extractions depending on the compound. The CAR-PDMS fibre was better for the VOCs with a low molecular mass, whereas the DVB-CAR-PDMS fibre was better for the VOCs with a high molecular mass. Finally, the method was characterised in terms of linearity, detection limit and reproducibility and applied to analyse four multilayer packaging samples with different VOCs contents.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Organic Chemicals / analysis*
  • Sensitivity and Specificity
  • Volatilization

Substances

  • Organic Chemicals