Quantitative stereological evaluation of the gracile and cuneate nuclei and their projection neurons in the rat

J Comp Neurol. 2003 Sep 1;463(4):419-33. doi: 10.1002/cne.10747.

Abstract

Stereological methods were employed to estimate the volume and neuron numbers of the rat dorsal column nuclei (DCN). These methods were applied to Nissl-stained sections from control animals and cases that received injections of horseradish peroxidase in the thalamus, the cerebellum, or the spinal cord. Additional cases received combinations of fluorescent tracers in the same structures, to examine whether some of the retrogradely labeled neurons sent collaterals to different targets. The mean volume of the DCN is 0.81 mm(3) (range 0.65-1.10 mm(3)), of which 3%, 39%, and 59% correspond, respectively, to the nucleus of Bischoff (Bi), the gracile (Gr), and the cuneate (Cu) nuclei. Within Cu, the middle division (CuM) is the largest (42%), followed by the rostral (CuR; 36%) and caudal (CuC; 22%) divisions. The mean total number of neurons in the DCN is 16,000 (range 12,400-19,500), of which 2.4%, 34.0% and 63.6% correspond, respectively, to Bi, Gr, and Cu. Within Cu, CuM contains 48% of all neurons, and 27% correspond to CuR and 25% to CuC. Interanimal variability is moderate for the whole DCN and Cu but increases when individual nuclei are considered. About 80% of DCN neurons project to the thalamus, 3% to the spinal cord, and 7% to the cerebellum. Thalamic-projecting cells are more numerous in CuM and Gr (83%), and relatively less common in Bi and CuC (72-74%). Most of the DCN neurons projecting to the spinal cord appear in CuC and CuM. Two-thirds of the neurons projecting to the cerebellum are located in CuR, 20% in CuM, and 15% in Gr. A small fraction of neurons projects simultaneously to spinal cord and thalamus.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Cell Count
  • Cerebellum / anatomy & histology
  • Male
  • Medulla Oblongata / anatomy & histology*
  • Neural Pathways / anatomy & histology
  • Neural Pathways / cytology
  • Neurons / cytology*
  • Rats
  • Rats, Wistar
  • Spinal Cord / anatomy & histology
  • Thalamus / anatomy & histology