In vivo cellular and molecular mechanisms of neuronal apoptosis in the mammalian CNS

Prog Neurobiol. 2003 Apr;69(5):287-312. doi: 10.1016/s0301-0082(03)00051-0.

Abstract

Apoptosis has been recognized to be an essential process during neural development. It is generally assumed that about half of the neurons produced during neurogenesis die before completion of the central nervous system (CNS) maturation, and this process affects nearly all classes of neurons. In this review, we discuss the experimental data in vivo on naturally occurring neuronal death in normal, transgenic and mutant animals, with special attention to the cerebellum as a study model. The emerging picture is that of a dual wave of apoptotic cell death affecting central neurons at different stages of their life. The first wave consists of an early neuronal death of proliferating precursors and young postmitotic neuroblasts, and appears to be closely linked to cell cycle regulation. The second wave affects postmitotic neurons at later stages, and is much better understood in functional terms, mainly on the basis of the neurotrophic concept in its broader definition. The molecular machinery of late apoptotic death of postmitotic neurons more commonly follows the mitochondrial pathway of intracellular signal transduction, but the death receptor pathway may also be involved.Undoubtedly, analysis of naturally occurring neuronal death (NOND) in vivo will offer a basis for parallel and future studies aiming to elucidate the mechanisms of pathologic neuronal loss occurring as the result of conditions such as neurodegenerative disorders, trauma or ischemia.

Publication types

  • Research Support, Non-U.S. Gov't
  • Review

MeSH terms

  • Animals
  • Apoptosis / genetics
  • Apoptosis / physiology*
  • Autophagy / physiology
  • Central Nervous System / pathology*
  • Central Nervous System / physiology
  • Humans
  • Necrosis
  • Neurons / physiology*