Eta6-mesityl,eta1-imidazolinylidene-carbene-ruthenium(II) complexes: catalytic activity of their allenylidene derivatives in alkene metathesis and cycloisomerisation reactions

Chemistry. 2003 May 23;9(10):2323-30. doi: 10.1002/chem.200204533.

Abstract

The reaction of electron-rich carbene-precursor olefins containing two imidazolinylidene moieties [(2,4,6-Me(3)C(6)H(2)CH(2))NCH(2)CH(2)N(R)Cdbond;](2) (2a: R=CH(2)CH(2)OMe, 2 b R=CH(2)Mes), bearing at least one 2,4,6-trimethylbenzyl (R=CH(2)Mes) group on the nitrogen atom, with [RuCl(2)(arene)](2) (arene=p-cymene, hexamethylbenzene) selectively leads to two types of complexes. The cleavage of the chloride bridges occurs first to yield the expected (carbene) (arene)ruthenium(II) complex 3. Then a further arene displacement reaction takes place to give the chelated eta(6)-mesityl,eta(1)-carbene-ruthenium complexes 4 and 5. An analogous eta(6)-arene,eta(1)-carbene complex with a benzimidazole frame 6 was isolated from an in situ reaction between [RuCl(2)(p-cymene)](2), the corresponding benzimidazolium salt and cesium carbonate. On heating, the RuCl(2)(imidazolinylidene) (p-cymene) complex 8, with p-methoxybenzyl pendent groups attached to the N atoms, leads to intramolecular p-cymene displacement and to the chelated eta(6)-arene,eta(1)-carbene complex 9. On reaction with AgOTf and the propargylic alcohol HCtbond;CCPh(2)OH, compounds 4-6 were transformed into the corresponding ruthenium allenylidene intermediates (4-->10, 5-->11, 6-->12). The in situ generated intermediates 10-12 were found to be active and selective catalysts for ring-closing metathesis (RCM) or cycloisomerisation reactions depending on the nature of the 1,6-dienes. Two complexes [RuCl(2)[eta(1)-CN(CH(2)C(6)H(2)Me(3)-2,4,6)CH(2)CH(2)N- (CH(2)CH(2)OMe)](C(6)Me(6))] 3 with a monodentate carbene ligand and [RuCl(2)[eta(1)-CN[CH(2)(eta(6)-C(6)H(2)Me(3)-2,4,6)]CH(2)CH(2)N-(CH(2)C(6)H(2)Me(3)-2,4,6)]] 5 with a chelating carbene-arene ligand were characterised by X-ray crystallography.