A new biological matrix for septal occlusion

J Interv Cardiol. 2003 Apr;16(2):149-52. doi: 10.1046/j.1540-8183.2003.08027.x.

Abstract

The ideal septal occluder scaffold should promote the healthiest and most complete healing response possible while eventually facilitating the full resorption of the material, leaving "native" tissue behind. An excellent biocompatibility of the scaffold tissue is a prerequisite for quick, complete, and firm ingrowth of the device, optimizing outcomes and minimizing the potential for complications. Intestinal collagen layer (ICL) is a highly purified (acellular) bioengineered type-1 collagen derived from porcine submucosa. It is gradually resorbed by the host organism and subsequently replaced by the host tissue. CardioSEAL occluders were modified by substituting the conventional polyester fabric for an intestinal collagen layer (ICL). Percutaneous transcatheter closure of interventionally created atrial septal defects was performed in lambs using these modified occluders. A complete pathomorphological investigation including histology was carried out after 2, 4, and 12 weeks follow-up. Standard CardioSEAL implants served as a control group. After 2 weeks in vivo the devices were already covered completely by neo-endothelium. Compared with the conventional synthetic scaffold, ICL devices showed a quicker endothelialization, decreased thrombogenicity, and superior biocompatibility with no significant cellular infiltration observed in the histology of explants with ICL fabrics. After 3 months in vivo the collagen layer remained mechanically intact, but began to show the first histological signs of mild disintegration, gradual resorption, and remodeling. In conclusion, short-term results from preliminary in vivo experiments using a bioengineered collagen matrix as the occluder tissue scaffold showed excellent biocompatibility. This resulted in superior overall results: quicker endothelialization, a decreased thrombogenicity, and decreased immunological host response.

MeSH terms

  • Absorbable Implants*
  • Animals
  • Biocompatible Materials*
  • Collagen*
  • Granulation Tissue / cytology
  • Heart Septal Defects / therapy*
  • Materials Testing
  • Prosthesis Design
  • Sheep
  • Tissue Engineering*

Substances

  • Biocompatible Materials
  • Collagen