Efficient epoxidation of olefins with >/=99% selectivity and use of hydrogen peroxide

Science. 2003 May 9;300(5621):964-6. doi: 10.1126/science.1083176.

Abstract

Epoxides are an important class of industrial chemicals that have been used as chemical intermediates. Catalytic epoxidation of olefins affords an interesting production technology. We found a widely usable green route to the production of epoxides: A silicotungstate compound, [gamma-SiW10O34(H2O)2]4-, is synthesized by protonation of a divacant, lacunary, Keggin-type polyoxometalate of [gamma-SiW10O36]8- and exhibits high catalytic performance for the epoxidation of various olefins, including propylene, with a hydrogen peroxide (H2O2) oxidant at 305 kelvin. The effectiveness of this catalyst is evidenced by >/=99% selectivity to epoxide, >/=99% efficiency of H2O2 utilization, high stereospecificity, and easy recovery of the catalyst from the homogeneous reaction mixture.