Nucleophilic displacements in supercritical carbon dioxide under phase-transfer catalysis conditions. 2. Effect of pressure and kinetics

J Org Chem. 2003 May 16;68(10):4046-51. doi: 10.1021/jo0268308.

Abstract

The nucleophilic displacement on n-octylmesylate (n-C(8)H(17)OSO(2)CH(3), 1) with four different anions (I(-), Br(-), N(3)(-), and SCN(-)) is investigated under liquid-supercritical phase-transfer catalysis (LSc-PTC) conditions, i.e. in a biphase system of supercritical carbon dioxide (scCO(2)) and water, in the presence of both silica supported and conventional onium salts. The CO(2) pressure greatly affects the concentration of 1 in the sc-phase and plays a major role on its conversion. For example, at 50 degrees C and with a supported PT-catalyst, the conversion of 1 into n-octyl iodide drops by a factor of 5 as the CO(2) pressure is increased from 80 to 150 bar, while in the same pressure range, the solubility of n-octylmesylate in scCO(2) shows a 6-fold increase, indicating that the reagent is desorbed from the catalyst. Under LSc-PTC conditions, pseudo-first-order kinetic rate constants, evaluated for the investigated reactions, show that the performance of scCO(2) as a PTC solvent and the relative nucleophilicity order of the anions (N(3)(-) > I(-) > or = Br(-) > SCN(-)) are comparable to those of toluene and n-heptane. The behavior of conventional phosphonium salts in the scCO(2)/H(2)O biphase system suggests that the reaction may take place either within small droplets of PT-catalyst containing water or in a separate third liquid phase of the PT-catalyst itself.