Isotopic assessment of sources and processes affecting sulfate and nitrate in surface water and groundwater of Luxembourg

Isotopes Environ Health Stud. 2002 Dec;38(4):191-206. doi: 10.1080/10256010208033265.

Abstract

Surface water and deep and shallow groundwater samples were taken from selected parts of the Grand-Duchy of Luxembourg to determine the isotopic composition of nitrate and sulfate, in order to identify sources and/or processes affecting these solutes. Deep groundwater had sulfate concentrations between 20 and 40 mg/L, delta34S(sulfate) values between -3.0 and -20.0 per thousand, and delta18O(sulfate) values between +1.5 and +5.0 per thousand; nitrate was characterized by concentrations varying between < 0.5 and 10 mg/L, delta15N(nitrate) values of approximately -0.5 per thousand, and delta18O(nitrate) values approximately +3.0 per thousand. In the shallow groundwater, sulfate concentrations ranged from 25 to 30 mg/L, delta34S(sulfate) values from -20.0 to +4.5 per thousand, and delta18O(sulfate) values from approximately +0.5 to +4.5 per thousand; nitrate concentrations varied between approximately 10 and 75 mg/L, delta15N(nitrate) values between +2.5 and +10.0 per thousand, and delta18O(nitrate) values between +1.0 and +3.0 per thousand. In surface water, sulfate concentrations ranged from 10 to 210 mg/L, delta34S(sulfate) values varied between -9.3 and +10.9 per thousand, and delta18O(sulfate) values between +3.0 and +10.7 per thousand were observed. Nitrate concentrations ranged from 10 to 40 mg/L, delta15N(nitrate) values from +6.5 to +12.0 per thousand, and delta18O(nitrate) values from -0.4 to +4.0 per thousand. Based on these data, three sulfate sources were identified controlling the riverine sulfate load. These are soil sulfate, dissolution of evaporites, and oxidation of reduced S minerals in the bedrock. Both groundwater types were predominantly influenced by sulfate from the two latter lithogenic S sources. The deep groundwater and a couple shallow groundwater samples had nitrate derived mainly from soil nitrification. All other sampling sites were influenced by nitrate originating from sewage and/or manure. A decrease in nitrate concentration observed along one of the rivers was attributed to denitrification. It appears that sulfate within Luxembourg's aquatic ecosystem is mainly of lithogenic origin, whereas nitrate is often derived from anthropogenic activities.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Environmental Monitoring
  • Isotopes
  • Luxembourg
  • Manure
  • Nitrates / analysis*
  • Sewage
  • Soil Microbiology
  • Sulfates / analysis*
  • Water Supply

Substances

  • Isotopes
  • Manure
  • Nitrates
  • Sewage
  • Sulfates