Review of the Integrated Groundwater and Surface-Water Model (IGSM)

Ground Water. 2003 Mar-Apr;41(2):238-46. doi: 10.1111/j.1745-6584.2003.tb02587.x.

Abstract

Development of the finite-element-based Integrated Groundwater and Surface-Water Model (IGSM) began in the 1970s. Its popularity grew in the early 1990s with its application to California's Central Valley Groundwater Surface-Water Model in support of the Central Valley Project Improvement Act. Since that time, IGSM has been applied by federal, state, and local agencies to model a number of major basins in California. Our review of the recently released version 5.0 of IGSM reveals a solution methodology that deviates from established solution techniques, potentially compromising its reliability under many circumstances. One difficulty occurs because of the semi-explicit time discretization used. Combined with the fixed monthly time step of IGSM, this approach can prevent applications from accurately converging when using parameter values typically found in nature. Additionally, IGSM fails to properly couple and simultaneously solve ground water and surface water models with appropriate mass balance and head convergence under the reasonable conditions considered herein. As a result, IGSM-predicted streamflow is error prone, and errors could exceed 100%. IGSM does not inform the user that there may be a convergence problem with the solution, but instead generally reports good mass balance. Although our review touches on only a few aspects of the code, which exceeds 17,000 lines, our experience is that similar problems arise in other parts of IGSM. Review and examples demonstrate the potential consequences of using the solution methods in IGSM for the prediction, planning, and management of water resources, and provide perspective on the roles of standards and code validation in ground water modeling.

Publication types

  • Review

MeSH terms

  • Forecasting
  • Models, Theoretical*
  • Soil*
  • Water Movements*
  • Water Supply*

Substances

  • Soil