Multisite catalysis: a mechanistic study of beta-lactone synthesis from epoxides and CO--insights into a difficult case of homogeneous catalysis

Chemistry. 2003 Mar 17;9(6):1273-80. doi: 10.1002/chem.200390144.

Abstract

Carbonylation of epoxides with a combination of Lewis acids and cobalt carbonyls was studied by both theoretical and experimental methods. Only multisite catalysis opens a low-energy pathway for trans opening of oxirane rings. This ring-opening reaction is not easily achieved with a single-site metal catalyst due to structural and thermodynamic constraints. The overall reaction pathway includes epoxide ring opening, which requires both a Lewis acid and a tetracarbonylcobaltate nucleophile, yielding a cobalt alkyl-alkoxy-Lewis acid moiety. After CO insertion into the Co-C(alkyl) bond, lactone formation results from a nucleophilic attack of the alkoxy Lewis acid entity on the acylium carbon atom. A theoretical study indicates a marked influence of the Lewis acid on both ring-opening and lactone-formation steps, but not on carbonylation. Strong Lewis acids induce fast ring opening, but slow lactone formation, and visa versa: a good balance of Lewis acidity would give the fastest catalytic cycle as all steps have low barriers. Experimentally, carbonylation of propylene oxide to beta-butyrolactone was monitored by online ATR-IR techniques with a mixture of tetracarbonylcobaltate and Lewis acids, namely BF(3), Me(3)Al, Et(2)Al(+).diglyme, and a combination of Me(3)Al/dicobaltoctacarbonyl. We found that the last two mixtures are extremely active in lactone formation.