Coordination properties of tris(2-carboxyethyl)phosphine, a newly introduced thiol reductant, and its oxide

Inorg Chem. 2003 Mar 24;42(6):1994-2003. doi: 10.1021/ic025969y.

Abstract

Acid-base properties and metal-binding abilities of tris(2-carboxyethyl)phosphine (TCEP), a newly introduced thiol group protectant, were studied in solution, using potentiometry, (1)H and (31)P NMR, and UV-vis spectroscopy, and also in the solid state by X-ray diffraction. Stability constants of complexes of the P-oxide of TCEP (TCEPO) were established by potentiometry. The list of metal ions studied included Ni(II), Cu(II), Zn(II), Cd(II), and Pb(II). Cu(II) catalyzed oxidation of TCEP to TCEPO. For all other systems ML complexes were found as major species at neutral pH with TCEP and TCEPO. Monoprotonated MHL species were also detected in weakly acidic conditions for all TCEP complexes and for the Pb(II) complex of TCEPO, while hydrolytic MH(-1)L complexes were found for TCEP at the weakly alkaline pH range. The NiL(4) complex was found to form at excess of TCEP. Overall, the complexes were found to be rather weak, with log beta(ML) values around 3-5 for TCEP and 1.5-2.5 for TCEPO. The phosphorus pK(a) value for TCEP, 7.68, suggests that it can be a good buffer for studies at physiological pH.