Characterization of monoaminergic systems in brain regions of prematurely ageing mice

Neurochem Int. 2003 Jul;43(2):165-72. doi: 10.1016/s0197-0186(02)00212-7.

Abstract

We have previously shown that differences in life span among members of Swiss mouse populations appear to be related to their exploration of a T-maze, with a slow exploration ("slow mice") being linked to increased levels of emotionality/anxiety, an impaired immune function and a shorter life span. Thus, we proposed the slow mice as prematurely ageing mice (PAM). We have now compared the monoaminergic systems of the PAM and of the non-prematurely ageing mice (NPAM), in discrete brain regions. PAM had decreased noradrenaline (NA) levels in all the brain regions analysed, whereas the 3-methoxy-4-hydroxyphenyl glycol (MHPG)/NA ratios were not significantly modified. PAM also showed decreased serotonine (5-HT) levels in hypothalamus, striatum and midbrain, as well as increased 5-hydroxyindol-3-acetic acid (5-HIAA)/5-HT ratios in hypothalamus and hippocampus. The dopamine (DA) content was lower in PAM in most regions, whereas the 3,4-dihydroxyphenylacetic acid (DOPAC)/DA and homovanillic acid (HVA)/DA ratios were either increased or unchanged depending on the region analysed. In most cases, the differences between PAM and NPAM involved both sexes. One exception was the hypothalamus where the differences only affected the male mice. The neurochemical alterations found in PAM resemble some changes reported for aged animals and are related with their behavioural features.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • 3,4-Dihydroxyphenylacetic Acid / metabolism
  • Aging, Premature / metabolism*
  • Animals
  • Brain / metabolism*
  • Disease Models, Animal
  • Dopamine / metabolism*
  • Female
  • Homovanillic Acid / metabolism
  • Hydroxyindoleacetic Acid / metabolism
  • Male
  • Mice
  • Organ Specificity
  • Serotonin / metabolism*
  • Sex Characteristics

Substances

  • 3,4-Dihydroxyphenylacetic Acid
  • Serotonin
  • Hydroxyindoleacetic Acid
  • Dopamine
  • Homovanillic Acid