A new phase diagram for layered antiferromagnetic films

Nat Mater. 2003 Feb;2(2):112-6. doi: 10.1038/nmat806.

Abstract

Magnetic multilayer films provide convenient model systems for studying the physics of antiferromagnetic films and surfaces. Here we report on the magnetic reversal and domain structure in antiferromagnetically coupled Co/Pt multilayers that are isomorphic to layered antiferromagnetic films with perpendicular magnetic anisotropy. We observe two distinct remanent states and reversal modes of the system. In mode 1 the magnetization in each layer reverses independently, producing an antiferromagnetic remanent state that shows full lateral correlation and vertical anticorrelation across the interlayers. In mode 2 the reversal in adjacent layers is locally synchronized with a remanent state that is vertically correlated but laterally anticorrelated in ferromagnetic stripe domains. Theoretical energy calculations of the two ground states identify a new phase boundary that is in good agreement with our experimental results.

Publication types

  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, Non-P.H.S.

MeSH terms

  • Chemistry, Physical / methods*
  • Cobalt / chemistry
  • Ferric Compounds / chemistry
  • Magnetics
  • Platinum / chemistry

Substances

  • Ferric Compounds
  • Cobalt
  • Platinum