Whole-genome sequence assembly for mammalian genomes: Arachne 2

Genome Res. 2003 Jan;13(1):91-6. doi: 10.1101/gr.828403.

Abstract

We previously described the whole-genome assembly program Arachne, presenting assemblies of simulated data for small to mid-sized genomes. Here we describe algorithmic adaptations to the program, allowing for assembly of mammalian-size genomes, and also improving the assembly of smaller genomes. Three principal changes were simultaneously made and applied to the assembly of the mouse genome, during a six-month period of development: (1) Supercontigs (scaffolds) were iteratively broken and rejoined using several criteria, yielding a 64-fold increase in length (N50), and apparent elimination of all global misjoins; (2) gaps between contigs in supercontigs were filled (partially or completely) by insertion of reads, as suggested by pairing within the supercontig, increasing the N50 contig length by 50%; (3) memory usage was reduced fourfold. The outcome of this mouse assembly and its analysis are described in (Mouse Genome Sequencing Consortium 2002).

MeSH terms

  • Animals
  • Computational Biology / methods
  • Contig Mapping / methods
  • Genome*
  • Humans
  • Mice
  • Software*