Serum-free culture of murine primordial germ cells and embryonic germ cells

Theriogenology. 2003 Mar;59(5-6):1257-64. doi: 10.1016/s0093-691x(02)01166-4.

Abstract

Fetal calf serum (FCS) has usually been used for culture of embryonic stem (ES) cell as a component of the culture medium. However, FCS contains undefined factors, which promote cell proliferation and occasionally stimulate differentiation of ES cells. Recently, a chemically-defined serum replacement, Knockout Serum Replacement (KSR), was developed to maintain ES cells in an undifferentiated state. In this experiment, we examined the effects of KSR on the growth and differentiation of primordial germ cells (PGCs) and embryonic germ (EG) cells. PGCs were collected 8.5 days postcoitum (dpc) from B6D2F1 (C57BL/6JxDBA/2J) female mice mated with B6D2F1 males. Most of the PGCs that were cultured in FCS-supplemented medium (FCS medium) had alkaline phosphatase (AP) activity and acquired a fibroblast cell shape. In contrast, PGCs in KSR-supplemented medium (KSR medium) proliferated, maintaining round and stem cell-like morphology. In addition, EG cells were established more easily from PGCs cultured in KSR medium than from PGCs cultured in FCS medium. The percentage of undifferentiated colonies of EG cells was significantly higher in KSR medium than in FCS medium. The germ line chimera was also produced from EG cells established in KSR medium. These results suggest that KSR can be used for sustaining an undifferentiated state of PGCs and EG cells in vitro.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Alkaline Phosphatase / metabolism
  • Animals
  • Animals, Newborn
  • Cell Count
  • Cell Culture Techniques / methods*
  • Chimera / physiology
  • Culture Media, Serum-Free
  • Female
  • Germ Cells / cytology*
  • Male
  • Mice
  • Mice, Inbred C57BL
  • Mice, Inbred DBA
  • Mice, Inbred ICR
  • Totipotent Stem Cells / cytology*

Substances

  • Culture Media, Serum-Free
  • Alkaline Phosphatase