Acute neuropharmacologic action of chloroquine on cortical neurons in vitro

Brain Res. 2003 Jan 10;959(2):280-6. doi: 10.1016/s0006-8993(02)03763-0.

Abstract

Chloroquine, a common quinolone derivative used in the treatment of malaria, has been associated with neurologic side-effects including depression, psychosis and delirium. The neuropharmacologic effects of chloroquine were examined on cultured cortical neurons using microelectrode array (MEA) recording and the whole-cell patch clamp technique. Whole-cell patch clamp records under current-clamp mode also showed a chloroquine-induced depression of the firing rate of spontaneous action potentials by approximately 40%, consistent with the observations with the MEA recording, although no changes in either the baseline membrane potential or input resistance were observed. Voltage clamp recordings of spontaneous post-synaptic currents, recorded in the presence of tetrodotoxin, revealed no obvious changes in either the amplitude or rate of occurrence of inward currents with application of chloroquine at 10 microM, suggesting that the fundamental molecular mechanisms underlying spontaneous synaptic transmission may not be affected by acute application of the drug. In contrast, a concentration-dependent inhibition of whole-cell calcium current was observed in the presence of chloroquine. These acute neuropharmacologic changes were not accompanied by cytotoxic actions of the compound, even after exposure of up to 500 microM chloroquine for 7 h. These data suggest that chloroquine can depress in vitro neuronal activity, perhaps through inhibition of membrane calcium channels.

Publication types

  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, Non-P.H.S.

MeSH terms

  • Action Potentials / drug effects
  • Action Potentials / physiology
  • Animals
  • Cells, Cultured
  • Cerebral Cortex / cytology
  • Cerebral Cortex / drug effects*
  • Cerebral Cortex / physiology
  • Chloroquine / pharmacology*
  • Neurons / drug effects*
  • Neurons / physiology
  • Rats

Substances

  • Chloroquine