Near-term lander experiments for growing plants on Mars: requirements for information on chemical and physical properties of Mars regolith

Life Support Biosph Sci. 2002;8(3-4):137-47.

Abstract

In order to support humans for long-duration missions to Mars, bioregenerative Advanced Life Support (ALS) systems have been proposed that would use higher plants as the primary candidates for photosynthesis. Hydroponic technologies have been suggested as the primary method of plant production in ALS systems, but the use of Mars regolith as a plant growth medium may have several advantages over hydroponic systems. The advantages for using Mars regolith include the likely bioavailability of plant-essential ions, mechanical support for plants, and easy access of the material once on the surface. We propose that plant biology experiments must be included in near-term Mars lander missions in order to begin defining the optimum approach for growing plants on Mars. Second, we discuss a range of soil chemistry and soil physics tests that must be conducted prior to, or in concert with, a plant biology experiment in order to properly interpret the results of plant growth studies in Mars regolith. The recommended chemical tests include measurements on soil pH, electrical conductivity and soluble salts, redox potential, bioavailability of essential plant nutrients, and bioavailability of phytotoxic elements. In addition, a future plant growth experiment should include procedures for determining the buffering and leaching requirements of Mars regolith prior to planting. Soil physical tests useful for plant biology studies in Mars regolith include bulk density, particle size distribution, porosity, water retention, and hydraulic conductivity.

Publication types

  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, Non-P.H.S.

MeSH terms

  • Biological Availability
  • Ecological Systems, Closed*
  • Exobiology
  • Extraterrestrial Environment
  • Hydrogen-Ion Concentration
  • Hydroponics
  • Life Support Systems*
  • Mars*
  • Minerals
  • Nutritional Requirements
  • Plant Development*
  • Soil / analysis*
  • Space Flight

Substances

  • Minerals
  • Soil