Three-dimensional structure determination of N-(p-Tolyl)-dodecylsulfonamide from powder diffraction data and validation of structure using solid-state NMR spectroscopy

J Am Chem Soc. 2002 Dec 4;124(48):14450-9. doi: 10.1021/ja027978b.

Abstract

The three-dimensional structure, conformation, and packing of molecules in the solid state are crucial components used in the optimization of many technologically useful materials properties. Single-crystal X-ray diffraction is the traditional and most effective method of determining 3-D structures in the solid state. Obtaining single crystals that are sufficiently large and free of imperfections is often laborious, time-consuming, and, occasionally, impossible. The feasibility of an integrated approach to the determination and verification of a complete three-dimensional structure for a medium-sized organic molecule without using single crystals is demonstrated for the case of an organic stabilizer compound N-(p-tolyl)-dodecylsulfonamide. The approach uses a combination of powder XRD data, several computational packages involving Monte Carlo simulations and ab initio quantum mechanical calculations, and experimental solid-state NMR chemical shifts. Structure elucidation of N-(p-tolyl)-dodecylsulfonamide revealed that the Bravais lattice is monoclinic, with cell dimensions of a = 38.773 A, b = 5.507 A, c = 9.509 A, and beta = 86.35 degrees, and a space group of P21/c.