Bupivacaine attenuates contractility by decreasing sensitivity of myofilaments to Ca2+ in rat ventricular muscle

Anesthesiology. 2002 Nov;97(5):1168-77. doi: 10.1097/00000542-200211000-00022.

Abstract

Background: Bupivacaine exhibits a cardiodepressant effect, the molecular mechanism(s) of which have yet to be fully understood. Bupivacaine may directly act on contractile proteins and thereby decrease myofibrillar Ca2+ sensitivity.

Methods: Rat ventricular muscle was used. First, the effect of bupivacaine was examined on tetanic contractions in isolated intact myocytes. Next, Triton X-100-treated ventricular trabeculae were used to investigate the effect of bupivacaine on the pCa (= -log [Ca2+ ])-tension relation as well as on maximal Ca2+ -activated tension. Furthermore, to test whether bupivacaine inhibits the pathway downstream from Ca2+ binding to troponin C, tension was elicited in the skinned preparations by lowering the Mg-adenosine triphosphate (MgATP) concentration in the absence of Ca2+. The effect of bupivacaine on the pMgATP (= -log [MgATP])-tension relation was examined.

Results: In myocytes, 3 microm bupivacaine significantly (P < 0.01) increased intracellular Ca2+ concentration required for 5% cell shortening from the resting cell length. In skinned preparations, bupivacaine shifted the pCa-tension relation to the lower pCa side; the midpoint of the pCa curve (pCa50) was significantly (P < 0.05) changed by 10 and 100 microm bupivacaine. A highly correlated linear relation (R = 0.81; P< 0.0005) was present between pCa50 and maximal Ca2+ -activated tension. Bupivacaine (10 and 100 microm) significantly (P < 0.05) shifted the midpoint of the pMgATP-tension relation to the higher pMgATP side.

Conclusions: Bupivacaine decreases myofibrillar Ca2+ sensitivity in ventricular muscle, and this is coupled with the compound's inhibitory effect on the pathway beyond Ca2+ binding to troponin C, possibly on the actomyosin interaction. The current results may partly explain the overall cardiodepressant effect of bupivacaine in vivo.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Actin Cytoskeleton / drug effects*
  • Actin Cytoskeleton / physiology
  • Adenosine Triphosphate / pharmacology
  • Anesthetics, Local / pharmacology*
  • Animals
  • Bupivacaine / pharmacology*
  • Calcium / metabolism
  • Calcium / pharmacology*
  • Heart Ventricles
  • Male
  • Muscle Cells / drug effects
  • Muscle Cells / physiology
  • Myocardial Contraction / drug effects*
  • Rats
  • Rats, Wistar

Substances

  • Anesthetics, Local
  • Adenosine Triphosphate
  • Calcium
  • Bupivacaine