High-temperature electron backscatter diffraction and scanning electron microscopy imaging techniques: in-situ investigations of dynamic processes

Scanning. 2002 Sep-Oct;24(5):232-40. doi: 10.1002/sca.4950240503.

Abstract

In-situ heating experiments have been conducted at temperatures of approximately 1200 K utilising a new design of scanning electron microscope, the CamScan X500. The X500 has been designed to optimise the potential for electron backscatter diffraction (EBSD) analysis with concomitant in-situ heating experimentation. Features of the new design include an inclined field emission gun (FEG) column, which affords the EBSD geometrical requirement of a high (typically 160 degrees) angle between the incoming electron beam and specimen surface, but avoids complications in heating-stage design and operation by maintaining it in a horizontal orientation. Our studies have found that secondary electron and orientation contrast imaging has been possible for a variety of specimen materials up to a temperature of at least 900 degrees C, without significant degradation of imaging quality. Electron backscatter diffraction patterns have been acquired at temperatures of at least 900 degrees C and are of sufficient quality to allow automated data collection. Automated EBSD maps have been produced at temperatures between 200 degrees C and 700 degrees C in aluminium, brass, nickel, steel, quartz, and calcite, and even at temperatures >890 degrees C in pure titanium. The combination of scanning electron microscope imaging techniques and EBSD analysis with high-temperature in-situ experiments is a powerful tool for the observation of dynamic crystallographic and microstructural processes in metals, semiconductor materials, and ceramics.