The complement dependent cytotoxicity (CDC) immune effector mechanism contributes to anti-CD154 induced immunosuppression

Transplantation. 2002 Sep 27;74(6):898-900. doi: 10.1097/00007890-200209270-00031.

Abstract

Background: In many situations, anti-CD154 (CD40 ligand) monoclonal antibody (mAb) treatment is very potent in producing allograft tolerance. In accordance to our previously reported results, combined donor specific transfusion (DST)3 plus anti-CD154 mAb (MR1) treatment enables the permanent engraftment of DBA/2 (H-2(d)) islets into B6AF1 (H-2(b/kd)) recipients in all cases. It has been widely assumed that the MR1 anti-154 is a noncytolytic neutralizing mAb, and it exerts immune suppressive effects by blockade of CD40/CD154 signal pathway. In this study, we sought to test the role of complement dependent cytotoxicity (CDC) immune effector mechanism in MR1 anti-CD154 induced immunosuppression.

Methods: We have evaluated the contributions of CDC in the context of the potent tolerizing effects of DST plus anti-CD154 mAb treatment regiment in recipients of islet allografts. We have used CD40 knockout (KO) mice and complement C5 deficient mice DBA/2 as islet allograft recipients as well as cobra venom factor (CVF), a complement blocker, treatment.

Results: The absence of direct and indirect CD40/CD154 pathway signals does not prevent islet allograft acute rejection. Interestingly, MR1 anti-CD154 induces islet allograft tolerance in the absence of CD40/CD154 pathway. In a wild-type major histocompatibility complex (MHC) mismatched strain combination, DST results in accelerated islet allograft rejection. Combination of DST and MR1 anti-CD154 treatment prevents presensitization and permits permanent engraftment. However, administration of CVF abolishes the tolerance induction. Moreover, DST plus MR1 anti-CD154 regiment, a potent tolerizing therapy, does not prevent acute islet allograft rejection when complement C5 deficient DBA/2 mice are used as recipients. Thus, the mechanisms of the tolerizing effects by MR1 anti-CD154 are not limited to blockade of CD40/CD154 signals. The CDC immune effector mechanism contributes to MR1 anti-CD154 induced immunosuppression.

Publication types

  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, P.H.S.

MeSH terms

  • Antibodies, Monoclonal / therapeutic use*
  • Blood Transfusion
  • CD40 Antigens / physiology
  • CD40 Ligand / physiology*
  • Complement System Proteins / physiology*
  • Cytotoxicity, Immunologic*
  • Humans
  • Immunosuppressive Agents / therapeutic use*
  • Islets of Langerhans Transplantation*
  • Transplantation, Homologous

Substances

  • Antibodies, Monoclonal
  • CD40 Antigens
  • Immunosuppressive Agents
  • CD40 Ligand
  • Complement System Proteins