Purification and physicochemical characterization of a cotyledonary lectin from Luetzelburgia auriculata

Phytochemistry. 2002 Oct;61(3):301-10. doi: 10.1016/s0031-9422(02)00239-x.

Abstract

A lectin was purified from the cotyledons of Luetzelburgia auriculata (Fr. All) Ducke by affinity chromatography on agarose-N-acetyl-D-galactosamine. The lectin is a potent agglutinin for rabbit erythrocytes, reacts with human red cells, but is inactive against cow, sheep, and goat erythrocytes. Hemagglutination of rabbit erythrocytes was inhibited by either 0.39 mM N-acetyl-neuraminic acid or N-acetyl-D-galactosamin, 12.5 mM D-lactose or D-melibiose, 50 mM D-galactose or raffinose. Its hemagglutinating activity was lost at 80 degrees C, 5 min, and the activation energy required for denaturation was 104.75 kJ mol(-1). Chromatography on Sephadex G-100, at pH 7.6, showed that at this hydrogenic ionic concentration the native lectin was a homotetramer (123.5 kDa). By denaturing SDS-PAGE, LAA seemed to be composed of a mixture of 29 and 15 kDa polypeptide subunits. At acidic and basic pHs it assumed different conformations, as demonstrated by exclusion chromatography on Superdex 200 HR 10/30. The N-terminal sequence of the 29 kDa band was SEVVSFSFTKFNPNQKDII and the 15 kDa band contained a mixture of SEVVSFSFTKFNPNQKDII and KFNQIVAVEEDTDXESQPQ sequences, indicating that these bands may represent full-length and its endogenous fragments, respectively. The lectin is a glycoprotein having 3.2% neutral carbohydrate, with a pI of 5.8, containing high levels of Asp+Asn and Glu+Gln and hydroxy amino acids, and low amount or absence of sulfur amino acids. Its absorption spectrum showed a maximum at 280 nm and a epsilon (1%) x (1cm) of 5.2. Its CD spectrum was characterized by minima near 228 nm, maxima near 196 nm and a negative to positive crossover at 210 nm. The secondary structure content was 6% alpha-helix, 8% parallel beta-sheet, 38% antiparallel beta-sheet, 17% beta-turn, 31% unordered and others contribution, and 1% RMS (root mean square). In the fluorescence spectroscopy, excitation of the lectin solution at 280 nm gave an emission spectrum in the 285-445 nm range. The wavelength maximum emission was in 334.5 nm, typical for tryptophan residues buried inside the protein.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Amino Acid Sequence
  • Amino Acids / analysis
  • Carbohydrates / analysis
  • Chromatography, Ion Exchange
  • Circular Dichroism
  • Electrophoresis, Polyacrylamide Gel
  • Fabaceae / chemistry*
  • Hemagglutination
  • Hot Temperature
  • Hydrogen-Ion Concentration
  • Isoelectric Focusing
  • Lectins / chemistry*
  • Lectins / isolation & purification*
  • Lectins / metabolism
  • Molecular Sequence Data
  • Molecular Weight
  • Sequence Analysis, Protein

Substances

  • Amino Acids
  • Carbohydrates
  • Lectins