Long-term tillage effects on soil metolachlor sorption and desorption behavior

Chemosphere. 2002 Sep;48(9):897-904. doi: 10.1016/s0045-6535(02)00188-1.

Abstract

Sorption and desorption are two important processes that influence the amount of pesticides retained by soils. However, the detailed sorption mechanisms as influenced by soil tillage management are unclear. This study examined the sorption and desorption characteristics of metolachlor [2-chloro-N-(2-ethyl-6-methyphenyl)-N-(2-methoxy-1-methylethyl)-acetamide] using the soil samples collected from the long-term conservation tillage (CnT) and conventional tillage (CT) research plots established in 1979 in Darlinton, SC. Humic acid (HA) and humin were extracted from the soils and used in the sorption experiments along with the whole soil samples. The sorption experiments were conducted using a batch-equilibration method. Three sequential desorption rinses were carried out following the sorption experiments. By comparing metolachlor sorption and desorption results we observed hysteresis for all soil samples and their organic matter fractions. Sorption nonlinearity (N) and hysteresis were dependent on the structure and composition of soil organic matter (SOM), e.g., Freundlich isotherm exponents (N) of HA and humin from CnT were higher than those of CT treatment, which may be related to high aromaticity of SOM fractions in CT treatment. Sorption capacity (K'f) was positively correlated with soil organic carbon (SOC) content. These results show that long-term tillage management can greatly affect metolachlor sorption and desorption behavior probably by qualitative differences in the structural characteristics of the humic substances.

Publication types

  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, Non-P.H.S.

MeSH terms

  • Acetamides / analysis*
  • Adsorption
  • Agriculture*
  • Carbon
  • Herbicides / analysis*
  • Soil Pollutants / analysis*

Substances

  • Acetamides
  • Herbicides
  • Soil Pollutants
  • Carbon
  • metolachlor