Influence of dietary cholesterol on vitamin d metabolism in formula-fed preterm neonates

J Pediatr Gastroenterol Nutr. 2002 Aug;35(2):180-4. doi: 10.1097/00005176-200208000-00014.

Abstract

Objectives: Supplementation of preterm formulas with cholesterol could help to mimic the fat composition of human milk. However, this could possibly influence vitamin D 25-hydroxylation because this reaction is catalyzed in part by the mitochondrial cytochrome P-450, the enzyme responsible for the 27-hydroxylation of cholesterol. The purpose of this study was to verify whether the addition of cholesterol to preterm formulas could interfere with vitamin D metabolism in preterm neonates.

Methods: In a prospective study, 30 preterm neonates were randomly assigned to a low (< 0.03 g/L), medium (0.15 g/L), or high (0.30 g/L) cholesterol-content preterm formula until theoretical term (i.e., 40 weeks post-conceptional age). Anthropometric data and serum hydroxy-vitamin D and 1,25 dihydroxy-vitamin D concentrations were measured at study entry and theoretical term. In a subgroup of 14 subjects, serum cholesterol and lymphocyte 3-hydroxy-3-methylglutaryl coenzyme A reductase mRNA were also assessed.

Results: (median [25, 75 centiles]): At theoretical term, there were no significant differences in serum hydroxy-vitamin D concentrations among the three groups, even after adjustment for confounding variables (65 [50, 78] nmol/L, 79 [59, 86] nmol/L, and 67 [43, 103] nmol/L, respectively, = 0.65) or 1,25 dihydroxy-vitamin D ( = 0.88). Furthermore, there were no significant differences in 3-hydroxy-3-methylglutaryl coenzyme A reductase mRNA copy numbers.

Conclusions: In preterm neonates fed formulas with a cholesterol content similar to or higher than that of human milk, we did not observe deleterious effects on vitamin D metabolism. However, long-term effects of cholesterol supplementation require further studies.

Publication types

  • Clinical Trial
  • Randomized Controlled Trial
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Bottle Feeding
  • Cholesterol / blood
  • Cholesterol, Dietary / administration & dosage*
  • Cholesterol, Dietary / adverse effects
  • Cholesterol, Dietary / metabolism
  • Humans
  • Hydroxymethylglutaryl CoA Reductases / genetics
  • Infant Food*
  • Infant Nutritional Physiological Phenomena
  • Infant, Newborn
  • Infant, Premature / metabolism*
  • Milk, Human / chemistry
  • Prospective Studies
  • RNA, Messenger / blood
  • Vitamin D / analogs & derivatives*
  • Vitamin D / blood
  • Vitamin D / metabolism*

Substances

  • Cholesterol, Dietary
  • RNA, Messenger
  • Vitamin D
  • 1,25-dihydroxyvitamin D
  • Cholesterol
  • 25-hydroxyvitamin D
  • Hydroxymethylglutaryl CoA Reductases