Design, synthesis and biological evaluation of cyclic angiotensin II analogues with 3,5 side-chain bridges. Role of C-terminal aromatic residue and ring cluster for activity and implications in the drug design of AT1 non-peptide antagonists

Bioorg Med Chem Lett. 2002 Sep 16;12(18):2627-33. doi: 10.1016/s0960-894x(02)00474-2.

Abstract

The novel amide linked angiotensin II (ANG II) cyclic analogues: gamma, epsilon -cyclo(3, 5)-[Sar(1)-Glu(3)-Lys(5)-Ile(8)] ANG II (I) and gamma, epsilon -cyclo(3, 5)-[Sar(1)-Glu(3)-Lys(5)-Phe(8)] ANG II (II) have been designed, synthesized and bioassayed in anesthetized rabbits in order to unravel structural ring cluster characteristics important for receptor activation. Analogue I with Ile at position 8 was an inhibitor of Angiotensin II while analogue II with Phe at position 8 was found to be an agonist. Similar results were reported for cyclic compounds that have reversed the linking between positions 3 and 5. The overall results show that positions 3 and 5 do not govern the biological activity of the synthetic analogues. It also appears that the aromatic ring cluster (Tyr-His-Phe) in agonist peptides is an essential stereo-electronic feature for Angiotensin II to exert its biological activity. A non-peptide mimetic of ANG II, 1-[2'-[(N-benzyl)tetrazol-5-yl]biphenyl-4-yl]methyl]-2-hydroxymethylbenzimidazole (BZI8) has been designed and synthesized. This molecule is more rigid and much less active than AT(1) non-peptide mimetic losartan probably because it lacks to mimic the orientation of tetrazole and the pharmacophore segments of butyl chain and imidazole ring.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Angiotensin II / analogs & derivatives*
  • Angiotensin II / chemistry
  • Angiotensin II / pharmacology
  • Animals
  • Drug Design*
  • Models, Molecular
  • Peptides, Cyclic / chemistry
  • Peptides, Cyclic / pharmacology*
  • Rabbits
  • Structure-Activity Relationship

Substances

  • Peptides, Cyclic
  • Angiotensin II