Self-assembly of novel dye molecules and [Cd8(SPh)12]4+ cubic clusters into three-dimensional photoluminescent superlattice

J Am Chem Soc. 2002 Aug 21;124(33):9688-9. doi: 10.1021/ja020480p.

Abstract

The use of organic multidentate ligands to organize inorganic species is an effective method to prepare porous solids with tunable pore sizes. However, thus far, inorganic building units are generally limited to individual metal ions (e.g., Zn2+) or their oxide clusters (e.g., Zn4O6+). To expand applications of porous materials to electronic, electrooptic, or optical areas, the organization of semiconducting chalcogenide nanoclusters is desirable. Here we report the organization of cubic [Cd8(SPh)12]4+ clusters by in-situ-generated tetradentate 1,2,4,5-tetra(4-pyridyl)benzene molecules. The structure consists of three-dimensional inorganic-organic open framework with large unidimensional channels. The combination of dye molecules and inorganic cluster units in the same material creates a synergetic effect that enhances the emission of the inorganic cluster at 580 nm. Such an emission can be excited by a broad spectral range down to the UV, which is believed to result from the absorption of dye molecules and the subsequent energy transfer. The inorganic double four-ring cluster, [Cd8(SPh)12]4+, is formed from conversion of supertetrahedral clusters, while the novel tetradentate dye molecule is formed by oxidative coupling of two diamines.