Adhesion in Candida spp

Cell Microbiol. 2002 Aug;4(8):461-9. doi: 10.1046/j.1462-5822.2002.00206.x.

Abstract

Microbial adherence is one of the most important determinants of pathogenesis, yet very few adhesins have been identified from fungal pathogens. Four structurally related adhesins, Hwp1, Ala1p/Als5p, Als1p, from Candida albicans and Epa1p from Candida glabrata, are members of a class of proteins termed glycosylphosphatidylinositol-dependent cell wall proteins (GPI-CWP). These proteins have N-terminal signal peptides and C-terminal features that mediate glycosylphosphatidylinositol (GPI) membrane anchor addition, as well as other determinants leading to attachment to cell wall glucan. While common signalP/GPI motifs facilitate cell surface expression, unique features mediate ligand binding specificities of adhesins. The first glimpse of structural features of putative adhesins has come from biophysical characterizations of the N-terminal domain of Als5p. One protein not in the GPI-CWP class that was initially described as an adhesin, Int1p, has recently been shown to be similar to Bud4p of Saccharomyces cerevisiae in primary amino acid sequence, in co-localizing with septins and in functioning in bud site selection. Progress in understanding the role of adhesins in oroesophageal candidiasis has been made for Hwp1 in a study using beige athymic and transgenic epsilon 26 mice that have combined defects in innate and acquired immune responses. Searches of the C. albicans genome for proteins in the GPI-CWP class has led to the identification of a subset of genes that will be the focus of future efforts to identify new Candida adhesins.

Publication types

  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, P.H.S.
  • Review

MeSH terms

  • Amino Acid Sequence
  • Animals
  • Candida / genetics
  • Candida / physiology*
  • Candidiasis / metabolism
  • Cell Adhesion / physiology*
  • Fungal Proteins / chemistry
  • Fungal Proteins / genetics
  • Fungal Proteins / metabolism
  • Models, Biological
  • Molecular Sequence Data
  • Open Reading Frames
  • Sequence Alignment

Substances

  • Fungal Proteins