Experimental verification of the effects of optical wavelength on the amplitude of laser generated ultrasound in polymer-matrix composites

Ultrasonics. 2002 May;40(1-8):809-12. doi: 10.1016/s0041-624x(02)00215-9.

Abstract

Laser ultrasound is now integrated into the manufacturing process of some of the most modern aircraft for the inspection of composite parts. Unfortunately, for some material and process combinations, laser-ultrasound suffers from a lack of sensitivity. In laser-ultrasound generation, optical penetration depth plays a very important role. It was shown that changing the generation wavelength from the 10.6 microm of the CO2 laser to the 3-4 microm range can significantly improve generation efficiency. In this paper, ultrasonic displacements are compared to measurements of optical penetration depth in different polymer-matrix composites. Ultrasonic waves were generated using an optical parametric oscillator operating in the 3.0-3.5 microm band and optical penetration depth spectra were evaluated using quantitative photoacoustic spectroscopy. The relative amplitudes of the generated ultrasonic waves track closely the optical penetration depth spectra. These results experimentally demonstrate the importance of optical penetration in the laser-ultrasound generation process.