Effect of training on activation of extracellular signal-regulated kinase 1/2 and p38 mitogen-activated protein kinase pathways in rat soleus muscle

Clin Exp Pharmacol Physiol. 2002 Aug;29(8):655-60. doi: 10.1046/j.1440-1681.2002.03713.x.

Abstract

1. The effect of a chronic programme of either low- or moderate-to-high-intensity treadmill running on the activation of the extracellular-signal regulated protein kinase (ERK1/2) and the p38 mitogen-activated protein kinase (MAPK) pathways was determined in rat muscle. 2. Sprague-Dawley rats were assigned to one of three groups: (i) sedentary (NT; n = 8); (ii) low-intensity training (8 m/min; LIT; n = 16); and (iii) moderate-to-high-intensity training (28 m/min; HIT; n = 16). The training regimens were planned so that animals covered the same distance and had similar glycogen utilization for both LIT and HIT exercise sessions. 3. A single bout of LIT or HIT following 8 weeks of training led to a twofold increase in the phosphorylation of ERK1/2 (P = 0.048) and a two- to threefold increase in p38 MAPK (P = 0.005). Extracellular signal-regulated kinase 1/2 phosphorylation in muscle sampled 48 h after the last exercise bout was similar to sedentary values, while p38 MAPK phosphorylation was 70-80% lower than sedentary. One bout of LIT or HIT increased total ERK1/2 and p38 MAPK expression, with the magnitude of this increase being independent of prior exercise intensity or duration. Extracellular signal- regulated kinase 1/2 expression was increased three- to fourfold in muscle sampled 48 h after the last exercise bout irrespective of the prior training programme (P = 0.027), but p38 MAPK expression was approximately 90% lower than sedentary values. 4. In conclusion, exercise-training of different intensities/ durations results in selective postexercise activation of intracellular signalling pathways, which may be one mechanism regulating specific adaptations induced by diverse training programmes.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Body Mass Index
  • Enzyme Activation / physiology
  • Female
  • Glycogen / metabolism
  • MAP Kinase Signaling System / physiology*
  • Mitogen-Activated Protein Kinase 1 / metabolism*
  • Mitogen-Activated Protein Kinase 3
  • Mitogen-Activated Protein Kinases / biosynthesis
  • Mitogen-Activated Protein Kinases / metabolism*
  • Muscle, Skeletal / enzymology*
  • Phosphorylation
  • Physical Conditioning, Animal / physiology*
  • Rats
  • Rats, Sprague-Dawley
  • p38 Mitogen-Activated Protein Kinases

Substances

  • Glycogen
  • Mitogen-Activated Protein Kinase 1
  • Mitogen-Activated Protein Kinase 3
  • Mitogen-Activated Protein Kinases
  • p38 Mitogen-Activated Protein Kinases