Solution and biologically relevant conformations of enantiomeric 11-cis-locked cyclopropyl retinals

J Am Chem Soc. 2002 Jun 26;124(25):7294-302. doi: 10.1021/ja020083e.

Abstract

To gain information on the conformation of the 11-cis-retinylidene chromophore bound to bovine opsin, the enantiomeric pair (2a and 2b) of 11-cis-locked bicyclo[5.1.0]octyl retinal (retCPr) 2 was prepared and its conformation was investigated by NMR, geometry optimization, and CD calculations. This compound is also of interest since it contains a unique moiety in which a chiral cyclopropyl group is flanked by triene and enal chromophores, and hence would clarify the little-known chiroptical contribution of a cyclopropyl ring linked to polyene systems. NMR revealed that the seven-membered ring of retCPr adopts a twist chair conformation. The NMR-derived structure constraints were then used for optimizing the geometry of 2 with molecular mechanics and ab initio methods. This revealed that enantiomer 2a with a 11 beta,12 beta-cyclopropyl group exists as two populations of diastereomers depending on the twist around the 6-s bond; however, the sense of twist around the 12-s is positive in both rotamers. The theoretical Boltzmann-weighted CD obtained with the pi-SCF-CI-DV MO method and experimental spectra were consistent, thus suggesting that the conjugative effect of the cyclopropyl moiety is minimal. It was found that only the beta-cyclopropyl enantiomer 2a, but not the alpha-enantiomer 2b, binds to opsin. This observation, together with earlier retinal analogues incorporation results, led to the conclusion that the chromophore sinks into the N-terminal of the opsin receptor from the side of the 4-methylene and 15-aldehyde, and that the binding cleft accommodates 11-cis-retinal with a slightly positive twist around C12/C13. A reinterpretation of the previously published negative CD couplet of 11,12-dihydrorhodopsin also leads to a chromophoric C12/C13 twist conformation with the 13-Me in front as in 1b. Such a conformation for the chromophore accounts for both the observed biostereoselectivity of retCPr 2a and the observed negative couplet of 11,12-dihydro-Rh7.

Publication types

  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, P.H.S.

MeSH terms

  • Animals
  • Bridged Bicyclo Compounds / chemistry
  • Cattle
  • Circular Dichroism
  • Cyclopropanes / chemistry*
  • Models, Molecular
  • Molecular Conformation
  • Nuclear Magnetic Resonance, Biomolecular
  • Retinaldehyde / analogs & derivatives*
  • Retinaldehyde / chemistry
  • Rhodopsin / chemistry
  • Solutions
  • Stereoisomerism

Substances

  • Bridged Bicyclo Compounds
  • Cyclopropanes
  • Solutions
  • Rhodopsin
  • Retinaldehyde