Downregulation of ERK2 is essential for the inhibition of radiation-induced cell death in HSP25 overexpressed L929 cells

Cell Death Differ. 2002 Apr;9(4):448-56. doi: 10.1038/sj.cdd.4400979.

Abstract

We previously reported that overexpression of HSP25 delayed cell growth, increased the level of p21(waf), reduced the levels of cyclin D1, cyclin A and cdc2, and induced radioresistance in L929 cells. In this study, we demonstrated that HSP25 induced-radioresistance was abolished by transfection with plasmids containing antisense hsp25 cDNA. Extracellular regulated kinase (ERK) and MAP kinase/ERK kinase (MEK) expressions as well as their activation (phospho-forms) were inhibited by hsp25 overexpression. Furthermore, when control vector transfected cells were treated with PD98059, MEK inhibitor, they became resistant to radiation, suggesting that inhibition of ERK1/2 activities was essential for radioresistance in L929 cells. To confirm the relationship between ERK1/2 and hsp25-mediated radioresistance, ERK1 or ERK2 cDNA was transiently transfected into the hsp25 overexpressed cells and their radioresistance was examined. HSP25-mediated radioresistance was abolished by overexpression of ERK2, but not by overexpression of ERK1. Alteration of cell cycle distribution and cell cycle related protein expressions (cyclin D, cyclin A and cdc2) by hsp25 overexpression were also recovered by ERK2 cDNA transfection. Increase in Bcl-2 protein by hsp25 gene transfection was also reduced by subsequent ERK2 cDNA-transfection. Taken together, these results suggest that downregulation of ERK2 is essential for the inhibition of radiation-induced cell death in HSP25 overexpressed cells.

Publication types

  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, P.H.S.

MeSH terms

  • Animals
  • Apoptosis* / radiation effects
  • Cell Line
  • Down-Regulation*
  • Enzyme Inhibitors / pharmacology
  • Flavonoids / pharmacology
  • Gene Expression
  • Heat-Shock Proteins*
  • Mice
  • Mitogen-Activated Protein Kinase 1 / antagonists & inhibitors
  • Mitogen-Activated Protein Kinase 1 / metabolism*
  • Mitogen-Activated Protein Kinase 3
  • Mitogen-Activated Protein Kinases / antagonists & inhibitors
  • Mitogen-Activated Protein Kinases / metabolism
  • Molecular Chaperones
  • Neoplasm Proteins / antagonists & inhibitors
  • Neoplasm Proteins / genetics
  • Neoplasm Proteins / metabolism*
  • Radiation Tolerance
  • Transfection

Substances

  • Enzyme Inhibitors
  • Flavonoids
  • Heat-Shock Proteins
  • Hsbp1 protein, mouse
  • Molecular Chaperones
  • Neoplasm Proteins
  • Mitogen-Activated Protein Kinase 1
  • Mitogen-Activated Protein Kinase 3
  • Mitogen-Activated Protein Kinases
  • 2-(2-amino-3-methoxyphenyl)-4H-1-benzopyran-4-one