Induction of arginase II in livers of bile duct-ligated rats

Biochem Pharmacol. 2002 Mar 15;63(6):1043-50. doi: 10.1016/s0006-2952(02)00845-6.

Abstract

Nitric oxide (NO) has been implicated in playing a role in liver cirrhosis, but the regulatory mechanisms are still unclear. As arginase shares a common substrate with NO synthase (NOS), the aim of this study was to investigate the expression of arginase I and II in cirrhotic liver. Liver cirrhosis was induced in rats by chronic bile duct ligation (BDL). Controls were sham-operated. Competitive polymerase chain reaction was performed to assay the expression of messenger RNA of arginase I and II. Protein expression was detected by immunohistochemistry and western-blotting. The level of arginine in plasma was lower in BDL rats, while the ornithine level in plasma was correspondingly higher (r= -0.96, P<0.0001). Arginase I messenger RNA was reduced significantly in BDL rats (3.34+/-0.32 vs. 1.32+/-0.21 x 10(4) attomole/microg of total RNA, sham vs. BDL, P<0.001), as well as arginase I protein. In contrast, arginase II mRNA was induced in the livers of BDL rats, with negligible expression in controls (0.35+/-0.11 vs. 3.64+/-0.54 attomole/microg of total RNA, sham vs. BDL, P<0.001). Arginase II protein was localized in some hepatocytes and hyperplastic bile ductular epithelial cells of cirrhotic livers but not in control livers. In conclusion, arginase II was induced in BDL livers, while the expression of arginase I was down-regulated. These data suggest that arginase I and II are regulated differently and may have different functions in the livers of BDL rats. Reduction of arginase I in BDL livers may be responsible for the lowering of arginine levels in the plasma, while induction of arginase II could be important in regulating NO synthesis as well as other important mechanisms involved in liver cirrhosis.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Arginase / biosynthesis*
  • Arginase / genetics
  • Arginine / metabolism
  • Cholestasis / enzymology*
  • Cholestasis / genetics
  • Cholestasis / metabolism
  • Disease Models, Animal
  • Enzyme Induction
  • Liver Cirrhosis / enzymology*
  • Male
  • Nitric Oxide / metabolism
  • RNA, Messenger / biosynthesis
  • Rats
  • Rats, Sprague-Dawley

Substances

  • RNA, Messenger
  • Nitric Oxide
  • Arginine
  • Arg2 protein, rat
  • Arginase