Transition-state variation in the nucleophilic substitution reactions of aryl bis(4-methoxyphenyl) phosphates with pyridines in acetonitrile

J Org Chem. 2002 Apr 5;67(7):2215-22. doi: 10.1021/jo0162742.

Abstract

The kinetics and mechanism of the reactions of Z-aryl bis(4-methoxyphenyl) phosphates, (4-MeOC(6)H(4)O)(2)P(=O)OC(6)H(4)Z, with pyridines (XC(5)H(4)N) are investigated in acetonitrile at 55.0 degrees C. In the case of more basic phenolate leaving groups (Z = 4-Cl, 3-CN), the magnitudes of beta(X) (beta(nuc)) and beta(Z) (beta(lg)) indicate that mechanism changes from a concerted process (beta(X) = 0.22-0.36, beta(Z) = -0.42 to -0.56) for the weakly basic pyridines (X = 3-Cl, 4-CN) to a stepwise process with rate-limiting formation of a trigonal bipyramidal pentacoordinate (TBP-5C) intermediate (beta(X) = 0.09-0.14, beta(Z) = -0.08 to -0.28) for the more basic pyridines (X = 4-NH(2), 3-CH(3)). This proposal is supported by a large negative cross-interaction constant (rho(XZ) = -1.98) for the former and a positive rho(XZ) (+0.97) for the latter processes. In the case of less basic phenolate leaving groups (Z = 3-CN, 4-NO(2)), the unusually small magnitude of beta(Z) values is indicative of a direct backside attack TBP-5C TS in which the two apical sites are occupied by the nucleophile and leaving group, ap(NX)-ap(LZ). The instability of the putative TBP-5C intermediate leading to a concerted displacement is considered to result from relatively strong proximate charge transfer interactions between the pi-lone pairs on the directly bonded equatorial oxygen atoms and the apical bond (n(O)(eq) - sigma(ap)). These are supported by the results of natural bond orbital (NBO) analyses at the NBO-HF/6-311+G//B3LYP/6-311+G level of theory.