Neural correlates of the precedence effect in the inferior colliculus: effect of localization cues

J Neurophysiol. 2002 Feb;87(2):976-94. doi: 10.1152/jn.00568.2001.

Abstract

The precedence effect (PE) is an auditory phenomenon involved in suppressing the perception of echoes in reverberant environments, and is thought to facilitate accurate localization of sound sources. We investigated physiological correlates of the PE in the inferior colliculus (IC) of anesthetized cats, with a focus on directional mechanisms for this phenomenon. We used a virtual space (VS) technique, where two clicks (a "lead" and a "lag") separated by a brief time delay were each filtered through head-related transfer functions (HRTFs). For nearly all neurons, the response to the lag was suppressed for short delays and recovered at long delays. In general, both the time course and the directional patterns of suppression resembled those reported in free-field studies in many respects, suggesting that our VS simulation contained the essential cues for studying PE phenomena. The relationship between the directionality of the response to the lead and that of its suppressive effect on the lag varied a great deal among IC neurons. For a majority of units, both excitation produced by the lead and suppression of the lag response were highly directional, and the two were similar to one another. For these neurons, the long-lasting inhibitory inputs thought to be responsible for suppression seem to have similar spatial tuning as the inputs that determine the excitatory response to the lead. Further, the behavior of these neurons is consistent with psychophysical observations that the PE is strongest when the lead and the lag originate from neighboring spatial locations. For other neurons, either there was no obvious relationship between the directionality of the excitatory lead response and the directionality of suppression, or the suppression was highly directional whereas the excitation was not, or vice versa. For these neurons, the excitation and the suppression produced by the lead seem to depend on different mechanisms. Manipulation of the directional cues (such as interaural time and level differences) contained in the lead revealed further dissociations between excitation and suppression. Specifically, for about one-third of the neurons, suppression depended on different directional cues than did the response to the lead, even though the directionality of suppression was similar to that of the lead response when all cues were present. This finding suggests that the inhibitory inputs causing suppression may originate in part from subcollicular auditory nuclei processing different directional cues than the inputs that determine the excitatory response to the lead. Neurons showing such dissociations may play an important role in the PE when the lead and the lag originate from very different directions.

Publication types

  • Research Support, U.S. Gov't, P.H.S.

MeSH terms

  • Acoustic Stimulation
  • Animals
  • Cats
  • Electrophysiology
  • Inferior Colliculi / cytology
  • Inferior Colliculi / physiology*
  • Models, Neurological
  • Neural Inhibition / physiology
  • Neurons / physiology*
  • Psychophysics
  • Reaction Time / physiology
  • Sound Localization / physiology*