Synthesis and Electrochemistry of Heterobimetallic Ruthenium/Platinum and Molybdenum/Platinum Complexes

Inorg Chem. 1996 Feb 14;35(4):916-922. doi: 10.1021/ic9510977.

Abstract

As starting materials for heterobimetallic complexes, [RuCp(PPh(3))CO(PPh(2)H)]PF(6) and [RuCp(PPh(3))CO(eta(1)-dppm)]PF(6) were prepared from RuCp(PPh(3))(CO)Cl. In the course of preparing [RuCp(eta(2)-dppm)(eta(1)-dppm)]Cl from RuCp(Ph(3)P)(eta(1)-dppm)Cl, the new monomer RuCpCl(eta(1)-dppm)(2) was isolated. The uncommon coordination mode of the two monodentate bis(phosphines) was confirmed by X-ray crystallography [a = 11.490(1) Å, b = 14.869(2) Å, c = 15.447(2) Å, alpha = 84.63(1) degrees, beta = 70.55(1) degrees, gamma = 72.92(1) degrees, V = 2378.7(5) Å(3), d(calc) = 1.355 g cm(-)(3) (298 K), triclinic, P&onemacr;, Z = 2]. The dppm-bridged bimetallic complexes RuCp(PPh(3))Cl(&mgr;-dppm)PtCl(2), RuCpCl(&mgr;-dppm)(2)PtCl(2), and [RuCp(PPh(3))CO(&mgr;-dppm)PtCl(2)]PF(6) each exhibit electrochemistry consistent with varying degrees of metal-metal interaction. The cationic heterobimetallic complexes [Mo(CO)(3)(&mgr;-dppm)(2)Pt(H)]PF(6) and [MoCp(CO)(2)(&mgr;-PPh(2))(&mgr;-H)Pt(PPh(3))(MeCN)]PF(6) were prepared by chloride abstraction from the corresponding neutral bimetallic species and show electrochemical behavior similar to the analogous Ru/Pt complexes.