Optimizing separation conditions for polycyclic aromatic hydrocarbons in micellar electrokinetic chromatography

J Chromatogr A. 2001 Jul 27;924(1-2):397-405. doi: 10.1016/s0021-9673(01)00794-4.

Abstract

We report the separation of polycyclic aromatic hydrocarbons (PAHs) using 0.1% poly(ethylene oxide) (PEO) in micellar electrokinetic chromatography (MEKC). In the presence of PEO, adsorption of PAHs on the capillary wall was reduced, leading to better resolution and reproducibility. Effects of tetrapentylammonium iodide (TPAI), dextran sulfate (DS), methanol, and sodium lauryl sulfate (SDS) on the separation of PAHs were elucidated. In terms of resolution and speed, DS, compared to TPAI, is a better additive for separation of PAHs. When using 0.1% PEO solution containing 45% methanol, 50 mM SDS, and 0.02% DS, separation of 10 PAHs containing 2 to 5 benzene rings was accomplished in less than 12 min at 15 kV in a commercial CE system. The method has also been tested for separating seven PAHs with high quantum yields when excited at 325 nm using a He-Cd laser. Unfortunately, separation of the seven PAHs was not achieved and sensitivity diminished under the same conditions. To optimize sensitivity, resolution and speed, a stepwise technique in MEKC has been proposed. The seven PAHs were resolved in 35 min at 15 kV when separation was performed in 0.1% PEO solution containing 35 mM SDS, 40% methanol and 0.02% DS for 2 min, and subsequently in 0.1% PEO solution containing 20 mM SDS, 50% methanol, and 0.02% DS.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Chromatography, Micellar Electrokinetic Capillary / methods*
  • Polycyclic Compounds / isolation & purification*
  • Sensitivity and Specificity
  • Sodium Dodecyl Sulfate

Substances

  • Polycyclic Compounds
  • Sodium Dodecyl Sulfate