Influx and accumulation of Cs(+) by the akt1 mutant of Arabidopsis thaliana (L.) Heynh. lacking a dominant K(+) transport system

J Exp Bot. 2001 Apr;52(357):839-44. doi: 10.1093/jexbot/52.357.839.

Abstract

An extensive literature reports that Cs(+), an environmental contaminant, enters plant cells through K(+) transport systems. Several recently identified plant K(+) transport systems are permeable to Cs(+). Permeation models indicate that most Cs(+) uptake into plant roots under typical soil ionic conditions will be mediated by voltage-insensitive cation (VIC) channels in the plasma membrane and not by the inward rectifying K(+) (KIR) channels implicated in plant K nutrition. Cation fluxes through KIR channels are blocked by Cs(+). This paper tests directly the hypothesis that the dominant KIR channel in plant roots (AKT1) does not contribute significantly to Cs(+) uptake by comparing Cs(+) uptake into wild-type and the akt1 knockout mutant of Arabidopsis thaliana (L.) Heynh. Wild-type and akt1 plants were grown to comparable size and K(+) content on agar containing 10 mM K(+). Both Cs(+) influx to roots of intact plants and Cs(+) accumulation in roots and shoots were identical in wild-type and akt1 plants. These data indicate that AKT1 is unlikely to contribute significantly to Cs(+) uptake by wild-type Arabidopsis from 'single-salt' solutions. The influx of Cs(+) to roots of intact wild-type and akt1 plants was inhibited by 1 mM Ba(2+), Ca(2+) and La(3+), but not by 10 microM Br-cAMP. This pharmacology resembles that of VIC channels and is consistent with the hypothesis that VIC channels mediate most Cs(+) influx under 'single-salt' conditions.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Arabidopsis / genetics
  • Arabidopsis / metabolism*
  • Arabidopsis Proteins*
  • Cesium / metabolism*
  • Ion Transport
  • Plant Proteins / genetics*
  • Potassium / metabolism*
  • Potassium Channels / genetics*

Substances

  • Arabidopsis Proteins
  • Plant Proteins
  • Potassium Channels
  • AKT1 protein, Arabidopsis
  • Cesium
  • Potassium