Aluminum toxicity studies in Vaucheria longicaulis var. macounii (Xanthophyta, Tribophyceae). I. Effects on cytoplasmic organization

Environ Exp Bot. 2001 Jun;45(3):205-222. doi: 10.1016/s0098-8472(00)00087-3.

Abstract

Using differential interference contrast (DIC) and epifluorescence microscopy, we tested the hypothesis that exposure to environmentally significant levels of aluminum (Al) would cause rapid changes in cytoplasmic organization in vegetative filaments of the coenocytic alga, Vaucheria longicaulis Hoppaugh var. macounii Blum resulting in the loss of cytoplasmic streaming. In untreated cells, DIC microscopy revealed the presence of cortical cytoplasmic strands that were oriented longitudinally to the cell axis as well as sub-cortical cytoplasmic strands that exhibited a reticulate morphology. Organelles such as chloroplasts and mitochondria translocated throughout the cell in close association with the cortical longitudinal cytoplasmic strands. Staining with the lipophilic dye, 3,3-dihexyloloxacarbocyanine, revealed structures that appeared to be endoplasmic reticulum (ER). This organelle closely resembled, in location and appearance, the cytoplasmic strands visualized using DIC microscopy. The addition of Al (80 µM) resulted in the inhibition of cytoplasmic streaming as well as the dissipation of the putative cortical longitudinal ER within one minute. Subsequently, the DIC-visible cortical cytoplasmic strands exhibited progressive degrees of disorganization. Throughout these changes, chloroplasts and mitochondria remained visibly associated with the cortical cytoplasmic strands.