Designed beta-hairpin peptides with defined tight turn stereochemistry

Biopolymers. 2001 Mar;58(3):335-46. doi: 10.1002/1097-0282(200103)58:3<335::AID-BIP1010>3.0.CO;2-U.

Abstract

The conformational analysis of two synthetic octapeptides, Boc-Leu-Val-Val-D-Pro-L-Ala-Leu-Val-Val-OMe (1) and Boc-Leu-Val-Val-D-Pro-D-Ala-Leu-Val-Val-OMe (2) has been carried out in order to investigate the effect of beta-turn stereochemistry on designed beta-hairpin structures. Five hundred megahertz (1)H NMR studies establish that both peptides 1 and 2 adopt predominantly beta-hairpin conformations in methanol solution. Specific nuclear Overhauser effects provide evidence for a type II' beta-turn conformation for the D-Pro-L-Ala segment in 1, while the NMR data suggest that the type I' D-Pro-D-Ala beta-turn conformation predominates in peptide 2. Evidence for a minor conformation in peptide 2, in slow exchange on the NMR time scale, is also presented. Interstrand registry is demonstrated in both peptides 1 and 2. The crystal structure of 1 reveals two independent molecules in the crystallographic asymmetric unit, both of which adopt beta-hairpin conformations nucleated by D-Pro-L-Ala type II' beta-turns and are stabilized by three cross-strand hydrogen bonds. CD spectra for peptides 1 and 2 show marked differences, presumably as a consequence of the superposition of spectral bands arising from both beta-turn and beta-strand conformations.

Publication types

  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, Non-P.H.S.
  • Research Support, U.S. Gov't, P.H.S.

MeSH terms

  • Circular Dichroism
  • Crystallization
  • Crystallography, X-Ray
  • Magnetic Resonance Spectroscopy
  • Molecular Conformation
  • Peptides / chemical synthesis
  • Peptides / chemistry*
  • Protein Engineering
  • Protein Structure, Secondary

Substances

  • Peptides