Steroid regulation of programmed cell death during Drosophila development

Cell Death Differ. 2000 Nov;7(11):1057-62. doi: 10.1038/sj.cdd.4400753.

Abstract

Steroid hormones play an important role in the regulation of numerous physiological responses, but the mechanisms that enable these systemic signals to trigger specific cell changes remain poorly characterized. Recent studies of Drosophila illustrate several important features of steroid-regulated programmed cell death. A single steroid hormone activates both cell differentiation and cell death in different tissues and at multiple stages during development. While several steroid-regulated genes are required for cell execution, most of these genes function in both cell differentiation and cell death, and require more specific factors to kill cells. Genes that regulate apoptosis during Drosophila embryogenesis are induced by steroids in dying cells later in development. These apoptosis genes likely function downstream of hormone-induced factors to serve a more direct role in the death response. This article reviews the current knowledge of steroid signaling and the regulation of programmed cell death during development of Drosophila.

Publication types

  • Research Support, U.S. Gov't, Non-P.H.S.
  • Research Support, U.S. Gov't, P.H.S.
  • Review

MeSH terms

  • Animals
  • Apoptosis*
  • Drosophila melanogaster / cytology
  • Drosophila melanogaster / embryology
  • Drosophila melanogaster / genetics
  • Drosophila melanogaster / growth & development*
  • Ecdysone / metabolism*
  • Gene Expression Regulation
  • Second Messenger Systems / physiology
  • Signal Transduction
  • Steroids / metabolism*
  • Steroids / pharmacology

Substances

  • Steroids
  • Ecdysone