Determination of muscle-specific glucose flux using radioactive stereoisomers and microdialysis

Am J Physiol Endocrinol Metab. 2001 Jan;280(1):E187-92. doi: 10.1152/ajpendo.2001.280.1.E187.

Abstract

The purpose of the present study was to evaluate a novel approach for determining skeletal muscle-specific glucose flux using radioactive stereoisomers and the microdialysis technique. Microdialysis probes were inserted into the vastus lateralis muscle of human subjects and perfused (4 microl/min) with a Ringer solution containing small amounts of radioactive D- and L-glucose as the internal reference markers for determining probe recovery as well as varying concentrations of insulin (0-10 microM). The rationale behind this approach was that both stereoisomers would be equally affected by the factors that determine probe recovery, with the exception of L-glucose, which is nonmetabolizable and would not be influenced by tissue uptake. Therefore, any differences in the probe recovery ratios between the D- and L-stereoisomers represent changes in skeletal muscle glucose uptake directly at the tissue level. There were no differences in probe recovery between the D- (42.3 +/- 3.5%) and L- (41.2 +/- 3.5) stereoisomers during the control period (no insulin), which resulted in a D/L ratio of 1.04 +/- 0.03. However, during insulin perfusion (1 microM), The D/L ratio increased to 1.62 +/- 0.08 and 1.58 +/- 0.07 (P < 0.05) during the two collection (0-15 and 15-30 min) periods, respectively. This was accomplished solely by an increase (P < 0.05) in D-glucose probe recovery, as L-glucose probe recovery remained unchanged. In a second set of experiments, the perfusion of 10 microM insulin did not increase the D/L ratio (1.40 +/- 0.11) above that observed during 1.0 microM (1.41 +/- 0.07) insulin perfusion. These data suggest that this method is sufficiently sensitive to detect differences in insulin-stimulated glucose uptake; thus the use of radioactive stereoisomers in conjunction with the microdialysis technique provides a novel and useful technique for determining tissue-specific glucose flux and insulin sensitivity.

Publication types

  • Clinical Trial
  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, Non-P.H.S.
  • Research Support, U.S. Gov't, P.H.S.

MeSH terms

  • Adult
  • Biological Transport / drug effects
  • Biological Transport / physiology
  • Carbon Radioisotopes*
  • Female
  • Glucose / pharmacokinetics*
  • Humans
  • Hypoglycemic Agents / administration & dosage
  • Insulin / administration & dosage
  • Male
  • Microdialysis / methods*
  • Muscle, Skeletal / metabolism*
  • Perfusion
  • Tritium*

Substances

  • Carbon Radioisotopes
  • Hypoglycemic Agents
  • Insulin
  • Tritium
  • Glucose