Interferon-alpha2b reduces phosphorylation and activity of MEK and ERK through a Ras/Raf-independent mechanism

Br J Cancer. 2000 Aug;83(4):532-8. doi: 10.1054/bjoc.2000.1263.

Abstract

Interferon (IFN)-alpha affects the growth, differentiation and function of various cell types by transducing regulatory signals through the Janus tyrosine kinase/signal transducers of activation and transcription (Jak/STAT) pathway. The signalling pathways employing the mitogen-activated ERK-activating kinase (MEK) and the extracellular-regulated kinase (ERK) are critical in growth factors signalling. Engagement of the receptors, and subsequent stimulation of Ras and Raf, initiates a phosphorylative cascade leading to activation of several proteins among which MEK and ERK play a central role in routing signals critical in controlling cell development, activation and proliferation. We demonstrate here that 24-48 h following treatment of transformed T- and monocytoid cell lines with recombinant human IFN-alpha2b both the phosphorylation and activity of MEK1 and its substrates ERK1/2 were reduced. In contrast, the activities of the upstream molecules Ras and Raf-1 were not affected. No effect on MEK/ERK activity was observed upon short-term exposure (1-30 min) to IFN. The anti-proliferative effect of IFN-alpha was increased by the addition in the culture medium of a specific inhibitor of MEK, namely PD98059. In conclusion, our results indicate that IFN-alpha regulates the activity of the MEK/ERK pathway and consequently modulates cellular proliferation through a Ras/Raf-independent mechanism. Targeting the MEK/ERK pathway may strengthen the IFN-mediated anti-cancer effect.

MeSH terms

  • Antineoplastic Agents / pharmacology*
  • Cell Division / drug effects
  • Cell Line, Transformed
  • Depression, Chemical
  • Enzyme Inhibitors / pharmacology
  • Flavonoids / pharmacology
  • Humans
  • Interferon alpha-2
  • Interferon-alpha / pharmacology*
  • Jurkat Cells
  • MAP Kinase Kinase 1
  • MAP Kinase Signaling System / drug effects
  • MAP Kinase Signaling System / physiology
  • Mitogen-Activated Protein Kinase 1 / antagonists & inhibitors
  • Mitogen-Activated Protein Kinase 1 / metabolism*
  • Mitogen-Activated Protein Kinase 3
  • Mitogen-Activated Protein Kinase Kinases / antagonists & inhibitors
  • Mitogen-Activated Protein Kinase Kinases / metabolism*
  • Mitogen-Activated Protein Kinases / antagonists & inhibitors
  • Mitogen-Activated Protein Kinases / metabolism*
  • Phosphorylation / drug effects
  • Protein Serine-Threonine Kinases / antagonists & inhibitors
  • Protein Serine-Threonine Kinases / metabolism*
  • Proto-Oncogene Proteins c-raf / metabolism*
  • Proto-Oncogene Proteins p21(ras) / metabolism*
  • Recombinant Proteins
  • Time Factors
  • U937 Cells

Substances

  • Antineoplastic Agents
  • Enzyme Inhibitors
  • Flavonoids
  • Interferon alpha-2
  • Interferon-alpha
  • Recombinant Proteins
  • Protein Serine-Threonine Kinases
  • Proto-Oncogene Proteins c-raf
  • Mitogen-Activated Protein Kinase 1
  • Mitogen-Activated Protein Kinase 3
  • Mitogen-Activated Protein Kinases
  • MAP Kinase Kinase 1
  • MAP2K1 protein, human
  • Mitogen-Activated Protein Kinase Kinases
  • HRAS protein, human
  • Proto-Oncogene Proteins p21(ras)
  • 2-(2-amino-3-methoxyphenyl)-4H-1-benzopyran-4-one