A new model-based technique for enhanced small-vessel measurements in X-ray ciné-angiograms

IEEE Trans Med Imaging. 2000 Mar;19(3):243-55. doi: 10.1109/42.845182.

Abstract

Arterial diameter estimation from X-ray ciné angiograms is important for quantifying coronary artery disease (CAD) and for evaluating therapy. However, diameter measurement in vessel cross sections < or =1.0 mm is associated with large measurement errors. We present a novel diameter estimator which reduces both magnitude and variability of measurement error. We use a parametric nonlinear imaging model for X-ray ciné angiography and estimate unknown model parameters directly from the image data. Our technique allows us to exploit additional diameter information contained within the intensity profile amplitude, a feature which is overlooked by existing methods. This method uses a two-step procedure: the first step estimates the imaging model parameters directly from the angiographic frame and the second step uses these measurements to estimate the diameter of vessels in the same image. In Monte-Carlo simulation over a range of imaging conditions, our approach consistently produced lower estimation error and variability than conventional methods. With actual X-ray images, our estimator is also better than existing methods for the diameters examined (0.4-4.0 mm). These improvements are most significant in the range of narrow vessel widths associated with severe coronary artery disease.

Publication types

  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, Non-P.H.S.
  • Research Support, U.S. Gov't, P.H.S.
  • Review

MeSH terms

  • Arterial Occlusive Diseases / diagnostic imaging
  • Cineangiography*
  • Computer Simulation
  • Humans
  • Image Processing, Computer-Assisted / methods*
  • Phantoms, Imaging
  • Reproducibility of Results