Mesoscopic undulations and thickness fluctuations in lipid bilayers from molecular dynamics simulations

Biophys J. 2000 Jul;79(1):426-33. doi: 10.1016/S0006-3495(00)76304-1.

Abstract

Molecular dynamics simulations of fully hydrated Dipalmitoylphosphatidylcholine bilayers, extending temporal and spatial scales by almost one order of magnitude, are presented. The present work reaches system sizes of 1024 lipids and times 10-60 ns. The simulations uncover significant dynamics and fluctuations on scales of several nanoseconds, and enable direct observation and spectral decomposition of both undulatory and thickness fluctuation modes. Although the former modes are strongly damped, the latter exhibit signs of oscillatory behavior. From this, it has been possible to calculate mesoscopic continuum properties in good agreement with experimental values. A bending modulus of 4 x 10(-20) J, bilayer area compressibility of 250-300 mN/m, and mode relaxation times in the nanosecond range are obtained. The theory of undulatory motions is revised and further extended to cover thickness fluctuations. Finally, it is proposed that thickness fluctuations is the explanation to the observed system-size dependence of equilibrium-projected area per lipid.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • 1,2-Dipalmitoylphosphatidylcholine / chemistry*
  • Compressive Strength
  • Computer Simulation*
  • Lipid Bilayers / chemistry*
  • Models, Chemical*
  • Motion*
  • Surface Properties

Substances

  • Lipid Bilayers
  • 1,2-Dipalmitoylphosphatidylcholine